MTH 512 Graduate Advanced Linear Algebra Fall 2018, 1-4

Review Exam one MTH 512, Fall 2019

Ayman Badawi

QUESTION 1. Let A be a 3 × 5 such that A $2R_2$ B $-R_2 + R_3 \rightarrow R_3$ D = $\begin{bmatrix} 1 & 0 & 2 & -1 & 1 \\ 0 & 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}$

(i) Find the solution set to the system $A \begin{vmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{vmatrix} = \begin{bmatrix} -1 \\ 1 \\ 6 \end{bmatrix}$ [Hint: Note that the solution set is a subset of R^5 and think!].

SOLUTION 1.1. We need to form the augmented matrix. Note that A is the coefficient matrix. Hence $\begin{bmatrix} A \\ 1 \end{bmatrix}$

is the augmented matrix. By hypothesis A is reduced to D by row operations. Hence here we go

 $\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 6 \end{bmatrix} = 2R_2 \begin{bmatrix} B \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 6 \end{bmatrix} = -R_2 + R_3 \to R_3 \quad D = \begin{bmatrix} 1 & 0 & 2 & -1 & 1 & | & -1 \\ 0 & 1 & 2 & 0 & 3 & | & 2 \\ 0 & 0 & 0 & 1 & 2 & | & 4 \end{bmatrix} \quad \overrightarrow{R_3 + R_1 \to R_1} \quad F = \begin{bmatrix} 1 & 0 & 2 & -1 & 1 & | & -1 \\ 0 & 1 & 2 & 0 & 3 & | & 2 \\ 0 & 0 & 0 & 1 & 2 & | & 4 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 2 & 0 & 1 & | & 3 \\ 0 & 1 & 2 & 0 & 3 & | & 2 \\ 0 & 0 & 0 & 1 & 2 & | & 4 \end{bmatrix}$. Hence we stop and read $x_1 = 3 - 2x_3 - x_5, x_2 = 2 - 2x_3 - 3x_5, x_4 = 4 - 2x_5$. Note x_1, x_2, x_4 are leading variables and $x_3, x_5 \in R$ (free variables). Thus the solution set = $\{(3 - 2x_3 - x_5, 2 - 2x_3 - 3x_5, x_3, 4 - 2x_5, x_5) \mid x_3, x_5 \in R\}$

Since the system is not homogeneous, the solution set is a SUBSET of R^5 but NEVER a subspace of R^5 and hence it cannot be written as span. Also; note that we cannot talk about independent number (dimension) [since it is not a Subspace].

(ii) Find Elementary matrices E_1, E_2 such that $E_1E_2A = D$

SOLUTION 1.2. By staring at the row operations from A to D and $E_1E_2 = E$, we set at a start at the row operation corresponds to E_1 . Hence $E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ **SOLUTION 1.2.** By staring at the row operations from A to D and $E_1E_2 = D$, we see that the first row oper-

 $\begin{vmatrix} 0 & 1 & 0 \\ 0 & -1 & 1 \end{vmatrix}$

(iii) Let $D = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 4 & 2 \end{bmatrix}$. Find the matrix D without doing the actual multiplication of these 5 matrices [Stare well and thi

SOLUTION 1.3. By staring, we observe that the first 4 matrices are elementary matrices. Hence

$$\begin{bmatrix} 2 & 4 \\ 4 & 2 \end{bmatrix} \xrightarrow{-2R_1 + R_2 \to R_2} \begin{bmatrix} 2 & 4 \\ 0 & -6 \end{bmatrix} \xrightarrow{2R_2} \begin{bmatrix} 2 & 4 \\ 0 & -12 \end{bmatrix} \xrightarrow{-R_2 + R_1 \to R_1} \begin{bmatrix} 2 & -8 \\ 0 & -12 \end{bmatrix} = D$$

-. ID

QUESTION 2. (i) Let A be an $n \times n$ invertible matrix. Convince me (i.e. prove) that if a is an eigenvalue of A, then a^{-1} is an eigenvalue of A^{-1} . Also, convince me that $E_a = E_{a^{-1}}$.

SOLUTION 2.1. Since a is an eigenvalue of A and A is invertible, we conclude that $a \neq 0$ and there exists a nonzero point Q in R^n such that $AQ^T = aQ^T$. Multiply both sides with A^{-1} , we get $Q^T = aA^{-1}Q$. Thus $A^{-1}Q^T = \frac{1}{a}Q^T$. Thus 1/a is an eigenvalue of A^{-1} .

As we learned from Elementary Math, to show that two sets , say F, K, are equal, we need to show that $F \subseteq K$ and $K \subseteq F$.

Hence we need to show that $E_a \subseteq E_{a^{-1}}$ and $E_{a^{-1}} \subseteq E_a$.

So, let $Q \in E_a$. We show $Q \in E_{a^{-1}}$. Thus $AQ^T = aQ^T$. Multiply both sides with A^{-1} , we get $Q^T = aA^{-1}Q$. Thus $A^{-1}Q^T = \frac{1}{a}Q^T$. Thus $Q \in E_{a^{-1}}$. Hence $E_a \subseteq E_{a^{-1}}$.

Now let $W \in E_{a^{-1}}$. We show $W \in E_a$. Hence $A^{-1}W^T = \frac{1}{a}W^T$. Multiply both sides with A. Thus $W^T = \frac{1}{a}AW^T$. Hence $AW^T = aW^T$. Hence $W \in E_a$, and therefore $E_{a^{-1}} \subseteq E_a$. Since $E_a \subseteq E_{a^{-1}}$ and $E_{a^{-1}} \subseteq E_a$, we conclude that $E_{a^{-1}} = E_a$.

- (ii) Given A is a 3×3 diagnolizable matrix with eigenvalues 2, -2 such that $E_{-2} = span\{(1,2,3), (-1,-2,-2)\}$ and $E_2 = span\{(-1,-1,-3)\}$.
 - a. Find |A| and Trace(A)

SOLUTION 2.2. Since A is diagnolizable, by staring at E_{-2} and E_2 we conclude that 2 is repeated once and -2 is repeated twice. Hence |A| = (-2)(-2)(2) = 8. Trace(A) = -2 + -2 + 2 = -2. **NOTE that A is diagnolizable is not needed in this question! right?**

b. Find a diagonal matrix D and an invertible matrix Q such that $D = QAQ^{-1}$ (Do not calculate Q^{-1}).

SOLUTION 2.3. As explained in class, many possibilities. For example: $D = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$, $Q = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$

- $\begin{bmatrix} 1 & -1 & -1 \\ 2 & -1 & -2 \\ 3 & -3 & -2 \end{bmatrix}$
- c. Find $C_{A^{-1}}(\alpha)$.

SOLUTION 2.4. From question (2), we conclude that $\frac{-1}{2}$, $\frac{-1}{2}$, $\frac{1}{2}$ are the eigenvalues of A^{-1} . Hence $C_{A^{-1}}(\alpha) = (\alpha + \frac{1}{2})^2(\alpha - \frac{1}{2})$.

d. Find C_{A^2} and calculate A^2 .

SOLUTION 2.5. Let Q, D as in Solution 2.3. Hence $Q^{-1}DQ = A$. Thus $Q^{-1}D^2Q = A^2$. Stare at D^2 . You observe that $D^2 = 4I_3$. Hence $4Q^{-1}I_3Q = A^2$. Hence $A^2 = 4I_3$. Thus $C_{A^2}(\alpha) = |\alpha I_3 - 4I_3| = (\alpha - 4)^3$.

(iii) Let A be an $n \times n$ matrix. Suppose that there is a real number r such that the sum of all numbers in each column of A equals r. Convince me that r is an eigenvalue of A.

SOLUTION 2.6. Consider the matrix A^T . Then the sum of all numbers in each row of A^T equals r. Hence $A^T \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} = r \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$. Then r is an eigenvalue of A^T . We know that A^T and A have the same eigenvalues. Thus r is an eigenvalue of A.

eigenvalue of A.

(iv) Let A be a 13×13 matrix. Convince me that A must have at least one real eigenvalue.

SOLUTION 2.7. Note that the degree of $C_A(\alpha)$ is 13. So we set $C_A(\alpha) = 0$. Common knowledge (public knowledge) every polynomial of odd degree must have at least one real root. Thus A must have at least one real eigenvalue.

(v) Let A be a 4×4 matrix and $C_A(\alpha) = (\alpha - 3)^2 (\alpha - 2)^2$ such that $E_3 = span\{(2, 1, 1, 1)\}$ and $E_2 = span\{(-2, 1, 0, 1)\}$.

a. What is the solution set to the system $A\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = 5\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}$?

SOLUTION 2.8. By staring at $C_A(\alpha)$. We conclude that 5 is not an eigenvalue of A. Hence the solution set is $\{(0,0,0,0)\}$.

b. Let $F = 5I_4 + 2A^{-1} + 3A$. Give me a nonzero point Q and a real number a such that $FQ^T = aQ^T$.

SOLUTION 2.9. Fist observe that A^{-1} exists, since $|A| = (2)(2)(3)(3) = 36 \neq 0$. Choose any nonzero point Q in E_2 or E_3 . We Know from solution 2.1 that $Q \in E_{\frac{1}{2}}$ or $Q \in E_{\frac{1}{3}}$ (note $E_{\frac{1}{2}}$ and $E_{\frac{1}{3}}$ are eigenspaces of A^{-1}).

Let us choose $Q = (-2, 1, 0, 1) \in E_2$. Then $FQ^T = [5I_4 + 2A^{-1} + 3A]Q^T = 5I_4Q^T + 2A^{-1}Q^T + 3AQ^T = 5Q^T + 2(0.5Q^T) + 3(2Q^T) = 5Q^T + Q^T + 6Q^T = 12Q^T$ (i.e., 12 is an eigenvalue of F).

QUESTION 3. Let
$$A = \begin{bmatrix} -c_5 & a_2 & a_3 & -2c_1 & a_5 \\ c_3 & b_2 & b_3 & -c_1 & b_5 \\ c_1 & -2 & c_3 & -1 & c_5 \end{bmatrix}$$
. Given A is row-equivalent to $B = \begin{bmatrix} 2 & 4 & 4 & 2 & 4 \\ 0 & 1 & 1 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$.

(a)Find the matrix A.

SOLUTION 3.1. Note A_i means the ith column of A and $_iA$ means the ith row of A

By staring, $Row(A) = span\{(2, 4, 4, 2, 4), (0, 1, 1, 3, 1)\}$. As explained, each row of A is a linear combination of (2, 4, 4, 2, 4), (0, 1, 1, 3, 1)

Hence ${}_{3}A = (c_1, -2, c_3, -1, c_5) = a(2, 4, 4, 2, 4) + b(0, 1, 1, 3, 1) = (2a, 4a + b, 4a + b, 2a + 3b, 4a + b)$. Find a, b. Hence 4a + b = -2 and 2a + 3b = -1. Now solve! we get a = -0.5 and b = 0. Thus ${}_{3}A = (-1, -2, -2, -1, -2)$. Hence $c_1 = -1, c_3 = -2, c_5 = -2$.

Similarly $_{2}A = (-2, b_{2}, b_{3}, 1, b_{5}) = a(2, 4, 4, 2, 4) + b(0, 1, 1, 3, 1) = (2a, 4a + b, 4a + b, 2a + 3b, 4a + b)$. Find a, b. Hence 2a = -2 and 2a + 3b = 1. Now solve! we get a = -1 and b = 1. Thus $_{2}A = (-2, -3, -3, 1, -3)$.

Similarly $_1A = (2, a_2, a_3, 2, a_5) = a(2, 4, 4, 2, 4) + b(0, 1, 1, 3, 1) = (2a, 4a + b, 4a + b, 2a + 3b, 4a + b)$. Find a, b. Hence 2a = 2 and 2a + 3b = 2. Now solve! we get a = 1 and b = 0. Thus $_1A = (2, 4, 4, 2, 4)$.

	2	4	4	2	4	
Hence $A =$	-2	-3	-3	1	-3	
	1	-2	-2	-1	-2	

(b) Find a basis of Col(A).

As explained, to find a basis for Col(A). We stare at B, we locate the columns in B that have the "leaders". Here we see that the leaders are located in B_1 and B_2 . Thus we MUST choose A_1 , A_2 from A to form a basis for Col(A).

Hence a basis for Col(A) is $Badawi = \{(2, -2, -1), (4, -3, -2)\}$. Hence $Col(A) = span\{(2, -2, -1), (4, -3, -2)\}$.

QUESTION 4. Given $B = \{(0, 1, 1), (1, 0, -1), (2, -2, -1)\}$ is a basis for R^3 and $Q = (2, 6, -1) \in R^3$. Find $[Q]_B$.

SOLUTION 4.1. Form a matrix P, 3×3 , where each column of P is a point in B. Now you may solve the system $PX = Q^T$. Then the point in the solution set is $[Q]_B$. Another way, find P^{-1} . Then $P^{-1}Q^T = [Q]_B$.

QUESTION 5. Let $D = span\{(3a + 5b + 2, -2b + 1, 6a + 8b + 5, 6b - 3, 3a + 3b + 3) | a, b \in R\}$. (a) Convince me that D is a subspace of R^5 .

SOLUTION 5.1. As explained, D will be a subspace "if each coordinate can be written as linear combination of linear variables." There are many ways. For example: Let w = 3a + 5b + 2, v = -2b + 1. Note that $w, v \in R$ (since a, b in R). Hence 6a + 8b + 5 = 2w + v, 6b - 3 = -3v, 3a + 3b + 3 = w + v.

Thus $D = span\{(w, v, 2w + v, -3v, w + v) \mid w, v \in R\}$. Hence $D = span\{(1, 0, 2, 0, 1), (0, 1, 1, -3, 1)\}$

(b) Find an orthogonal basis of D.

SOLUTION 5.2. Just Use Gram Schmidt Method.

QUESTION 6. Let $A = \begin{bmatrix} 2 & 4 & 1 & -3 \\ -2 & b_2 & b_3 & b_4 \\ -2 & -4 & c_3 & c_4 \\ -2 & -4 & -1 & d_4 \end{bmatrix}$. Assume that a point $Q = (x_1, x_2, x_3, x_4)$ is selected randomly from $\begin{bmatrix} y_1 \end{bmatrix}$

 R^4 . Find all possible values of $b_2, b_3, b_4, c_3, c_4, d_4$ so that the system $A\begin{bmatrix} y_1\\y_2\\y_3\\y_4\end{bmatrix} = Q^T$ has a unique solution.

SOLUTION 6.1. We know that the claim will be correct iff $|A| \neq 0$. So we set $|A| \neq 0$. So let us calculate |A|.

$$A = \begin{bmatrix} 2 & 4 & 1 & -3 \\ -2 & b_2 & b_3 & b_4 \\ -2 & -4 & c_3 & c_4 \\ -2 & -4 & -1 & d_4 \end{bmatrix} \xrightarrow{R_1 + R_2 \to R_2} \overrightarrow{R_1 + R_3 \to R_3} \overrightarrow{R_1 + R_4 \to R_4} B = \begin{bmatrix} 2 & 4 & 1 & -3 \\ 0 & b_2 + 4 & b_3 + 1 & b_4 - 3 \\ 0 & 0 & c_3 + 1 & c_4 - 3 \\ 0 & 0 & 0 & d_4 - 3 \end{bmatrix}.$$

Hence $|A| = |B| = 2(b_2 + 4)(c_3 + 1)(d_4 - 3)$.

Thus $|A| \neq 0$ if $b_2 \neq -4$, $c_3 \neq -1$, $d_4 \neq 3$, b_3 , b_4 , $c_4 \in R$.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com